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A New Approach to Variational CI Calculations 
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A new method to perform variational CI calculations on systems containing non- 
interacting molecules is presented. 
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1. Introduction 

With the present efficiency of ab initio molecular orbital methods it has become 
feasible to calculate accurate energies for small molecular systems. By doing such 
calculations for a limited number of molecules the thermodynamic AU and AH 
values can be determined for a large number of chemical reactions. Such schemes 
have been extensively used within the Hartree-Fock approximation [1-5]. The 
extension of these calculations to include correlation effects, which may be essential 
for accurate AU and zSJ-/values [6-8] is not straightforward. It can, in principle, 
be done by two methods. Either one uses some form of electron pair approximation 
which gives estimates of total molecular correlation energies, or one calculates a 
variationally determined upper limit to the correlation energy. If we consider a 
chemical reaction A + B -+ AB, the advantage of the electron pair approximations is 
that the sum of the correlation energies for molecules A and B could be compared 
with the correlation energy for system AB and thus give an estimate of the corre- 
lation energy contribution to the AE value of the chemical reaction. The drawback 
of these methods is that the calculated correlation energies are not variationally 
determined [9]. 

If, on the other hand, we adopt a variational approach, problems arise since we must 
truncate our expansion of the wave function into Slater determinants. The standard 
choice is to include all singly and doubly replaced configurations. It is, however, 
known that the energy for non-interacting systems are not additive within this 
approximation. For example, to calculate the correlation energy contribution to the 
AE value for the reaction mentioned above in a consistent way one is forced to 
perform a configuration interaction (CI) calculation on A + B regarded as one system 
with two fragments far apart. This procedure has two major drawbacks. The size 
of the CI calculation increases considerably and, more important, it cannot be fitted 
into a scheme with calculations on a few molecules giving AU and AH for a larger 
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number of reactions. In the present work a simple variationally correct procedure is 
presented which circumvents these two drawbacks in a simple, although approximative, 
way. 

2. Theory 

Consider a system A in a quantum mechanical state which, to a good approximation, 
can be described by a single Slater determinant OVA built up from orthonormal spin 
orbitals Xi ( iE 1, 2 . . . .  n). The set of occupied spin orbitals Xi is completed by other 
spin orbitals Xa such that Xi, together with Xa, form an orthonormal set. We may 
define "singly substituted" determinants OV~'i as those obtained from OVA by replacing 

OVa, b ova,b,c Xi by Xa- "Doubly" and higher substituted determinants a,i, j ,  A,i,j ,k etc., are 

similarly defined. The configuration interaction expansion of the wave function for the 
considered state can be written [11] : 

~ A  = OVA + ~ a a ,,',a,b a,a,b C ~ , k  ov A,i  + E ~ A,i , j '~ A , i , j  + . . . .  
i,a i<j  

a<b  

(1) 

Now assume that the expansion of the wave function is truncated to contain only terms 
expressed explicitly in Eq. (1). This procedure is usually adopted in the direct CI method 
[10]. Further it has been shown that the contribution to the total energy of a system 
from singly substituted determinants is small, so we may assume that the wave function 
can be written 

a'IIA = OVA + ~.. ~a,b &a,b = CAOV k (2) V'A,i,f"*'A,i,j OVA + 
i<j 

a<b 

where 

, C a,.b. 
ov A = ~ a,~,j . ova,b 

i<j CA A,ij. (3) 
a<b 

Defined in this way OVA and OV~ will be orthonormal if we choose C A properly. If we 
know the best variational function in a given finite basis according to Eq, (2) then 

/qA xl2"A = EA 'Ira, (4) 

where H a is the projected Hamiltonian for the system A [12] defined by 

HA = rrHa 7r. (5) 

H A is the true Hamiltonian for the system and 7r is a projection operator corresponding 
to the used basis. Multiplying Eq. (4) from the left by OVA we obtain: 

( OVA ]HA ] XItA } = EA (6) 

or 

(OVX [HA I OVA ) + CA(OVA [HA [OV~) = EA. (6b) 
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If  we define the correlation energy for system A (E~ ~ as the difference between the 
total energy E A and, the energy corresponding to the determinant qSA(E~ ) this may 
be written: 

Ec~ rr = EA - E, O = CA(gPA lEA I d*bk }- (7) 

I f  we multiply Eq. (4) from the left by 4 ~  we obtain: 

(q5~ IHA I qSA) + CA(d9~ IHA I O~ ) = CAEA" (8) 

Using Eq. (7) we obtain: 

( q b k l H a l d ) k ) = e  ~ +(C~ 1) ~corr/p2 -- "z~ A /WA . (9) 

If we now form a ne, w system AB out o f  two non-interacting systems A and B we may 
write the wave function for the system AB with the same approximation as used in 
Zq. (2): 

r.a,b a,a b \ 
+ i<] t~B;k,l'-.eB',k,l ) . (1 O) 

a<b cl<e 

We now approximate ~ ,-~a,b a,a b , , "-'A,i,j"*'7~,i,] with a �9 q~a where q~A is taken from Eq. (2) and 
i<f 

using a similar approach for system B we may write 

"tI/AB = (~Aql)B -I- a~kr B + bcbacbB. (1 I) 

Now we may solve the secular equation for a wave function according to Eq. (11). The 
matrix elements needed were obtained from Eqs. (7) and (9). We obtain 

2 
corr E~B : + (12a) ( ( 1 - C ~ ) )  {~~ 1-C2 ~~ 

C I  EX~ + ~ - A  "Ex~ C I ~  ~AB +-CB-~ - -EB ) 

Here we have used the notation E ~  r = EAB -- E ~ - E~. EAB is the total energy for a 
wave function according to Eq. (11). Eq. (12a) is of  the third degree in corr EAB , and 
since all other quantities can easily be obtained from calculations on system A and B, 
it can be solved e.g. iteratively. Following the same principle the constants a and b may 
be determined and thus an approximative value for CAB calculated. In this way many 
systems can be added together. One obtains 

l = e '~ e ~ 
-T~_ 2 �9 + [ . (12b) 

-CA cor; l 1 -Cg 

3. Approximations 

To derive Eq. (12) two approximations have been made relative to a direct CI calcula- 
tion on the united systems. Firstly it is assumed that the relative weights of  all the 
excited determinants for one of  the sub-systems are unchanged when a second non- 
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interacting sub-system is introduced. Certainly this approximation is good since the 
changes in the coefficients are very small. Secondly it is assumed that the CI expansion 
for the sub-systems does not contain any determinants with single replacements. If 

t 

we define q~A a little differently, 

a5 A ~ a a a a,b C ~ , i / C A d ~ A , i  + ' = CA , i , j /CAd2)A , i , ] ,  (13) 
i,a i< j  

it can be seen that this change only introduces one extra term, 

C~,i ~ pd ,-r,a ehct 
W B,R'~ A , i '~  B,R ~ 

i,a k ,d  

in the wave function of the system AB. This term will only have matrix elements with 
itself and will cause only a slight lowering of the total energy of the system since the 

d matrix elements will be quadratic in both C~,i and CB, k. Thus we may conclude that 
the energy calculated using this approximative formalism is a true upper limit to the 
energy calculated in a direct configuration interaction calculation. 

4. Results 

In order to check the validity of the approximations made, some test calculations 
have been performed using the program system MOLECULE-CI [ 10]. A basis set 
consisting of 7s and 3p Gaussian basis functions contracted to 4,2 [13] has been 
used for oxygen and carbon, and 4s functions multiplied by 1.34 contracted to 2 [14] 
have been used for hydrogen in the SCF calculations. In the configuration interaction 
calculation all singly and doubly replaced determinants that could be constructed 
according to Eq. (1) were used except that the oxygen and carbon ls orbitals and 
corresponding part of the virtual orbital space were deleted in the expansion. 

The results obtained are shown in Table 1 together with accurately calculated values 
in an expansion containing both sub-systems. 

5. Discussion 

From Table 1 it can be seen that the difference between the approximate and the 
exact value for AE within the given basis set is nowhere larger than 1.26 �9 10-4 Hartree 
corresponding to 80 cal/mol. This is clearly smaller than the errors expected from 
other sources. It is also clear that the correction introduced by Eq. (12a) is substantial. 
It is thus clear that variational CI calculations on individual molecules can be used to 
estimate AU and ZX/-/values for chemical reactions. If the effect of higher substituted 
determinants are considered to be vital for the correlation energy part of 2~E it could 
be introduced in an approximative but fairly consistent way using the renormalization 
equation Eu.c. = (1 - c~)E 2 where Eu.c. is the considered effect, e o the coefficient of 
the leading determinant and Ea is the correlation energy calculated with singly and 
doubly replaced determinants. 
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Table 1 
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Direct CI Eq uations (12a) (12b) 

Corr. Energy Corr. Energy &E c~ 
System (a.u.) C A (a.u.) C A (a.u.) 

H 2 0.024830 0.1216606 - - - 
CO + H 2 -0.218080 0.2932754 - - - 
CH3OH 0.218172 0.2726204 - - - 
H20 -0.126162 0.1895858 - - - 
CH 4 -0.114144 0.2249407 -- -- -- 
H 2 + H 2  -0.048956 0.1692455 -0.048955 0.1696150 0.000001 
( C O + H 2 ) + H 2  -0.238432 0.3087531 -0.238375 0.3103180 0.000057 
( C O + H 2 ) + H 2 + H 2  -0.258397 0.3228767 -0.258271 0.3258433 0.000126 
(CO + lq2) + 2H2 -0.258397 0.3228767 -0.258289 0.3256990 0.000108 
CH3OH + H2 -0.238722 0.2904648 -0.238681 0.2914418 0.000041 
H20 + CH 4 -0.231065 0.2800637 -0.231028 0.2821772 0.000037 

In the  ca lcu la t ions  p r e sen t ed  in Table  1 the  a tomic  basis sets are no t  large e n o u g h  to 

ensure  rel iable &E values. The need  o f  large basis sets makes  i t  even more  i m p o r t a n t  

to  avoid CI ca lcu la t ions  on  c o m b i n e d  non - i n t e r ac t i ng  sys tems.  
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